Surveying

1

The Trapezoidal rule of volumes V of an embankment divided into a number of sections equidistant D, is given by

A.   `V = D [(A_1 + A_n)/(2)  A_2 + A_3 + .................+ A_(n - 1)]`
B.   `V = D/2  [(A_1 + A_n)/(4)  A_2 + A_3 + .................+ A_(n - 1)]`
C.  `V = [A_1 + A_n + 2(A_2 + A_4 + ........+ A_(n -1) + 4(A_3 + A_5 + .......+ A_(n-2))]`
D.  `V = [A_1 + A_n + 4(A_2 + A_4 + ........+ A_(n -1) + 4(A_3 + A_5 + .......+ A_(n-2))]`


2

If `Delta`is the angle of deflection of a simple curve of radius R, the length of its long chord, is

A. R cos`Delta/2`
B. 2R cos`Delta/2`
C. R sin`Delta/2`
D. 2R sin`Delta/2`

3
Correction per chain length of 100 links along a slope of `alpha^circ` is
A. `(1.5 alpha^2)/(100)`
B. `(1.5 alpha)/(100)`
C. `(1.5 alpha^3)/(100)`
D. `1.5 alpha^3`

4
 

If F is the pull applied at the ends of tape in kg, l is the length of tape between end marks in metres, w is the weight of the tape in kg per metre run, then sag correction

A. `C = (W^2 l^3)/(24F^2)`
B. `C = (W^3 l^2)/(24F^2)`
C. `C = (W^2 l^3)/(24F^3)`
D. `C = (24W^2 l^3)/(80F^3)`

5

If `Delta` is the angle of deflection of a simple curve of radius R, the distance between the mid-point of the curve and long chord, is

A. `R( 1- sin ` ` Delta/2`)
B. `R( 1+sin ` ` Delta/2`)
C. `R( 1+ cos ` ` Delta/2`)
D. `R( 1- cos ` ` Delta/2`)