Strenght of Materials

31

When a thin cvlindrical shell is subjected to an internal pressure, the volumetric strain is (where `epsilon_1`= Hoop strain, and` epsilon_2`= Longitudinal strain)

A. `2epsilon_1 - epsilon_2`
B. `2epsilon_1 + epsilon_2`
C. `2epsilon_2 - epsilon_1`
D. `2epsilon_2 + epsilon_1`

32

The maximum deflection of a cantilever beam of length l with a point load W at the free end is

A. `(Wl^3)/(3EI)`
B. `(Wl^3)/(8EI)`
C. `(Wl^3)/(16EI)`
D. `(Wl^3)/(48EI)`

33

The relation between Young's modulus (E) and bulk modulus (K) is given by

A. `K = (3m - 2)/(mE)`
B. `K = (mE)/(3m - 2)`
C. `K =(3 (m - 2))/(mE)`
D. `K = (mE)/(3(m-2))`

34

The strength of the un-riveted or solid plate per pitch length is

A. `d.t.sigma_c`
B. `p.t.sigma_t`
C. `(p - d)t.sigma_t`
D. `pi //2 xx d^2 xx tau`

35
When a body is subjected to bi-axial stress i.e. direct stresses (`sigma_x)`and (`sigma_y`)in two mutually perpendicular planes accompanied by a simple shear stress (`tau_(xy)`), then maximum normal stress is
A. `(sigma x + sigma y)/(2) + 1/2 sqrt((sigma_x - sigma_y)^2 + 4 tau_(xy)^2)`
B. `(sigma x + sigma y)/(2) - 1/2 sqrt((sigma_x - sigma_y)^2 + 4 tau_(xy)^2)`
C. `(sigma x - sigma y)/(2) +1/2 sqrt((sigma_x+ sigma_y)^2 + 4 tau_(xy)^2)`
D. `(sigma x - sigma y)/(2) - 1/2 sqrt((sigma_x+ sigma_y)^2 + 4 tau_(xy)^2)`